pub struct Memo<T>where
T: 'static,{ /* private fields */ }
Expand description
Memos are the result of computing a value from use_memo
.
You may have noticed that this struct doesn’t have many methods. Most methods for Memo
are defined on the Readable
and Writable
traits.
§Reading a Memo
You can use the methods on the Readable
trait to read a memo:
fn app() -> Element {
let mut count = use_signal(|| 0);
// The memo will rerun any time we write to the count signal
let halved = use_memo(move || count() / 2);
rsx! {
// When we read the value of memo, the current component will subscribe to the result of the memo. It will only rerun when the result of the memo changes.
"{halved}"
button {
onclick: move |_| {
count += 1;
},
"Increment"
}
}
}
Memo also includes helper methods just like Signal
s to make it easier to use. Calling a memo like a function will clone the inner value:
fn app() -> Element {
let mut count = use_signal(|| 0);
// The memo will rerun any time we write to the count signal
let halved = use_memo(move || count() / 2);
// This will rerun any time the halved value changes
let doubled = use_memo(move || 2 * halved());
rsx! {
"{doubled}"
button {
onclick: move |_| {
count += 1;
},
"Increment"
}
}
}
For a full list of all the helpers available, check out the Readable
, [ReadableVecExt
], and [ReadableOptionExt
] traits.
§Memos with Async
Because Memos check borrows at runtime, you need to be careful when reading memos inside of async code. If you hold a read of a memo over an await point, that read may still be open when the memo reruns which will cause a panic:
async fn double_me_async(value: &u32) -> u32 {
sleep(100).await;
*value * 2
}
let mut signal = use_signal(|| 0);
let halved = use_memo(move || signal() / 2);
let doubled = use_resource(move || async move {
// Don't hold reads over await points
let halved = halved.read();
// While the future is waiting for the async work to finish, the read will be open
double_me_async(&halved).await
});
rsx!{
"{doubled:?}"
button {
onclick: move |_| {
// When you write to signal, it will cause the memo to rerun which may panic because you are holding a read of the memo over an await point
signal += 1;
},
"Increment"
}
};
Instead of holding a read over an await point, you can clone whatever values you need out of your memo:
async fn double_me_async(value: u32) -> u32 {
sleep(100).await;
value * 2
}
let mut signal = use_signal(|| 0);
let halved = use_memo(move || signal() / 2);
let doubled = use_resource(move || async move {
// Calling the memo will clone the inner value
let halved = halved();
double_me_async(halved).await;
});
rsx!{
"{doubled:?}"
button {
onclick: move |_| {
signal += 1;
},
"Increment"
}
};
§Memo lifecycle
Memos are implemented with generational-box which makes all values Copy even if the inner value is not Copy.
This is incredibly convenient for UI development, but it does come with some tradeoffs. The lifetime of the memo is tied to the lifetime of the component it was created in. If you drop the component that created the memo, the memo will be dropped as well. You might run into this if you try to pass a memo from a child component to a parent component and drop the child component. To avoid this you can create your memo higher up in your component tree, or use global memos.
TLDR Don’t pass memos up in the component tree. It will cause issues:
fn MyComponent() -> Element {
let child_signal = use_signal(|| None);
rsx! {
IncrementButton {
child_signal
}
}
}
#[component]
fn IncrementButton(mut child_signal: Signal<Option<Memo<i32>>>) -> Element {
let signal_owned_by_child = use_signal(|| 0);
let memo_owned_by_child = use_memo(move || signal_owned_by_child() * 2);
// Don't do this: it may cause issues if you drop the child component
child_signal.set(Some(memo_owned_by_child));
todo!()
}
Implementations§
§impl<T> Memo<T>where
T: 'static,
impl<T> Memo<T>where
T: 'static,
pub fn new_with_location(
f: impl FnMut() -> T + 'static,
location: &'static Location<'static>
) -> Memo<T>where
T: PartialEq,
pub fn new_with_location(
f: impl FnMut() -> T + 'static,
location: &'static Location<'static>
) -> Memo<T>where
T: PartialEq,
Create a new memo with an explicit location
pub fn origin_scope(&self) -> ScopeId
pub fn origin_scope(&self) -> ScopeId
Get the scope that the signal was created in.
pub fn id(&self) -> GenerationalBoxId
pub fn id(&self) -> GenerationalBoxId
Get the id of the signal.
Trait Implementations§
§impl<T> From<Memo<T>> for ReadOnlySignal<T>where
T: PartialEq,
impl<T> From<Memo<T>> for ReadOnlySignal<T>where
T: PartialEq,
§fn from(val: Memo<T>) -> ReadOnlySignal<T>
fn from(val: Memo<T>) -> ReadOnlySignal<T>
§impl<T> IntoAttributeValue for Memo<T>
impl<T> IntoAttributeValue for Memo<T>
§fn into_value(self) -> AttributeValue
fn into_value(self) -> AttributeValue
§impl<T> IntoDynNode for Memo<T>
impl<T> IntoDynNode for Memo<T>
§fn into_dyn_node(self) -> DynamicNode
fn into_dyn_node(self) -> DynamicNode
§impl<T> Readable for Memo<T>where
T: PartialEq,
impl<T> Readable for Memo<T>where
T: PartialEq,
§fn try_peek_unchecked(
&self
) -> Result<<<Memo<T> as Readable>::Storage as AnyStorage>::Ref<'static, <Memo<T> as Readable>::Target>, BorrowError>
fn try_peek_unchecked( &self ) -> Result<<<Memo<T> as Readable>::Storage as AnyStorage>::Ref<'static, <Memo<T> as Readable>::Target>, BorrowError>
Get the current value of the signal. Unlike read, this will not subscribe the current scope to the signal which can cause parts of your UI to not update.
If the signal has been dropped, this will panic.
§type Storage = UnsyncStorage
type Storage = UnsyncStorage
§fn try_read_unchecked(
&self
) -> Result<<<Memo<T> as Readable>::Storage as AnyStorage>::Ref<'static, <Memo<T> as Readable>::Target>, BorrowError>
fn try_read_unchecked( &self ) -> Result<<<Memo<T> as Readable>::Storage as AnyStorage>::Ref<'static, <Memo<T> as Readable>::Target>, BorrowError>
§fn map<O>(
self,
f: impl Fn(&Self::Target) -> &O + 'static
) -> MappedSignal<O, Self::Storage>
fn map<O>( self, f: impl Fn(&Self::Target) -> &O + 'static ) -> MappedSignal<O, Self::Storage>
§fn read(&self) -> <Self::Storage as AnyStorage>::Ref<'_, Self::Target>
fn read(&self) -> <Self::Storage as AnyStorage>::Ref<'_, Self::Target>
§fn try_read(
&self
) -> Result<<Self::Storage as AnyStorage>::Ref<'_, Self::Target>, BorrowError>
fn try_read( &self ) -> Result<<Self::Storage as AnyStorage>::Ref<'_, Self::Target>, BorrowError>
§fn read_unchecked(
&self
) -> <Self::Storage as AnyStorage>::Ref<'static, Self::Target>
fn read_unchecked( &self ) -> <Self::Storage as AnyStorage>::Ref<'static, Self::Target>
§fn peek(&self) -> <Self::Storage as AnyStorage>::Ref<'_, Self::Target>
fn peek(&self) -> <Self::Storage as AnyStorage>::Ref<'_, Self::Target>
§fn try_peek(
&self
) -> Result<<Self::Storage as AnyStorage>::Ref<'_, Self::Target>, BorrowError>
fn try_peek( &self ) -> Result<<Self::Storage as AnyStorage>::Ref<'_, Self::Target>, BorrowError>
§fn peek_unchecked(
&self
) -> <Self::Storage as AnyStorage>::Ref<'static, Self::Target>
fn peek_unchecked( &self ) -> <Self::Storage as AnyStorage>::Ref<'static, Self::Target>
§fn with<O>(&self, f: impl FnOnce(&Self::Target) -> O) -> O
fn with<O>(&self, f: impl FnOnce(&Self::Target) -> O) -> O
impl<T> Copy for Memo<T>where
T: 'static,
Auto Trait Implementations§
impl<T> Freeze for Memo<T>
impl<T> !RefUnwindSafe for Memo<T>
impl<T> !Send for Memo<T>
impl<T> !Sync for Memo<T>
impl<T> Unpin for Memo<T>where
T: Unpin,
impl<T> !UnwindSafe for Memo<T>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more